Title | Genome-wide analysis of DNA binding and transcriptional regulation by the mammalian Doublesex homolog DMRT1 in the juvenile testis. |
Publication Type | Journal Article |
Year of Publication | 2010 |
Authors | Murphy, Mark W., Sarver Aaron L., Rice Daren, Hatzi Katerina, Ye Kenny, Melnick Ari, Heckert Leslie L., Zarkower David, and Bardwell Vivian J. |
Journal | Proc Natl Acad Sci U S A |
Volume | 107 |
Issue | 30 |
Pagination | 13360-5 |
Date Published | 2010 Jul 27 |
ISSN | 1091-6490 |
Keywords | Animals, Base Sequence, Binding Sites, Carrier Proteins, Cell Line, Chromatin Immunoprecipitation, DNA-Binding Proteins, Female, Gene Expression Regulation, Developmental, Genome, Humans, Male, Mice, Mice, Knockout, Promoter Regions, Genetic, Protein Binding, Testis, Transcription Factors, Transcriptional Activation, Transfection |
Abstract | <p>The DM domain proteins Doublesex- and MAB-3-related transcription factors (DMRTs) are widely conserved in metazoan sex determination and sexual differentiation. One of these proteins, DMRT1, plays diverse and essential roles in development of the vertebrate testis. In mammals DMRT1 is expressed and required in both germ cells and their supporting Sertoli cells. Despite its critical role in testicular development, little is known about how DMRT1 functions as a transcription factor or what genes it binds and regulates. We combined ChIP methods with conditional gene targeting and mRNA expression analysis and identified almost 1,400 promoter-proximal regions bound by DMRT1 in the juvenile mouse testis and determined how expression of the associated mRNAs is affected when Dmrt1 is selectively mutated in germ cells or Sertoli cells. These analyses revealed that DMRT1 is a bifunctional transcriptional regulator, activating some genes and repressing others. ChIP analysis using conditional mutant testes showed that DNA binding and transcriptional regulation of individual target genes can differ between germ cells and Sertoli cells. Genes bound by DMRT1 in vivo were enriched for a motif closely resembling the sequence DMRT1 prefers in vitro. Differential response of genes to loss of DMRT1 corresponded to differences in the enriched motif, suggesting that other transacting factors may modulate DMRT1 activity. DMRT1 bound its own promoter and those of six other Dmrt genes, indicating auto- and cross-regulation of these genes. Many of the DMRT1 target genes identified here are known to be important for a variety of functions in testicular development; the others are candidates for further investigation.</p> |
DOI | 10.1073/pnas.1006243107 |
Alternate Journal | Proc Natl Acad Sci U S A |
PubMed ID | 20616082 |
PubMed Central ID | PMC2922116 |
Grant List | GM59152 / GM / NIGMS NIH HHS / United States HD041056 / HD / NICHD NIH HHS / United States R01 GM059152 / GM / NIGMS NIH HHS / United States U54 HD055763 / HD / NICHD NIH HHS / United States R01 HD041056 / HD / NICHD NIH HHS / United States HD055763 / HD / NICHD NIH HHS / United States |